perm filename GRAPHS.PAL[AL,HE]2 blob
sn#306976 filedate 1977-09-27 generic text, type C, neo UTF8
COMMENT ⊗ VALID 00013 PAGES
C REC PAGE DESCRIPTION
C00001 00001
C00002 00002 Data structures, GSINIT
C00006 00003 UNLINK, NEWCEL
C00009 00004 NXTTIM
C00010 00005 INVLDT, INVLR0
C00012 00006 CHANGE, CHNGER
C00018 00007 ADDCHG
C00020 00008 GETVAL, GETVR0
C00022 00009 EVALND, EVLEXP
C00030 00010 MAKEXP, ADDCLC, REMCLC, DELEXP
C00038 00011 MAKEVN, DELVN
C00045 00012 MGNDS marking method for gnodes
C00059 00013 Known Bugs
C00062 ENDMK
C⊗;
; Data structures, GSINIT
.SBTTL Graph routines.
;Graph structure definitions
;RHT 9/74 RF 6/75, 10/75
COMMENT ⊗
This is the runtime's prime evil,
The murderous graph nodes and interlocks.
⊗
;GRAPH NODES ;Common fields for Variables and Expressions
II==0
XX GNMODE ;Mode bits. 1:variable. 2:expression
XX NXTGN ;Links all graph nodes. Points to next one.
XX PRVGN ;Previous link in that chain
XX INVMRK ;0 => valid, other => invalid
XX GNVAL ;points at the value cell
XX GNDEPS ;list of dependents (variables or expressions)
GNEND==II ;marks the end of the common region
;VARIABLE NODES ;Explicitly released, formed from large block store.
II==GNEND
XX VALIDF ;a count which is incremented at every reevaluation
XX VNCLCS ;list of expression nodes used as calculators
XX VNCHGS ;list of change cells. (see format below)
VNDSIZ == II/2 ;Length of variable node (in words)
;EXPRESSION NODES ;Explicitly released, formed from large block store.
II==GNEND
XX ENISB ;the ISB for this expression
XX ENIPC ;the IPC for this expression
XX ENNEED ;list of needed nodes (cell-linked)
ENDSIZ == II/2 ;Length of expression node (in words)
;CELL LINKS
II==0
XX CAR
XX CDR
;CHANGER CELL ;Explicitly released, formed from large block store.
II==0
XX NXTCHG ;next changer cell in chain
XX CHGISB ;Points to interpreter status block to resolve addressing
XX CHGIPC ;the interpeter PC where the calculation starts
CHGCSZ == II/2 ;Size of changer cell, in words
GNODES: .BLKW 1 ;head of chain of graph nodes.
TIME: 0 ;used during evaluation of nodes
VALIDNO:0 ;used for validity field of nodes
GNEVT: .BLKW 1 ;event for interlocking graph references
GSINIT:
;Initialize the graph structure to a null situation;
EVMAK ;Make a new interlock event.
MOV (SP),GNEVT;
EVSIG ;Give it one signal.
CLR GNODES;
CLR TIME;
CLR VALIDNO;
RTS PC ;Done
; UNLINK, NEWCEL
UNLINK:
COMMENT ⊗ A list is in R0, and an entity in R1. All occurrences of
that entity, if any, are removed from the list. The orphaned cells
are left for the garbage collector. A pointer to the list is
returned in R0 (it has changed if the first element was deleted). ⊗
MOV R2,-(SP) ;Save R2
MOV R3,-(SP) ;Save R3
MOV R0,R2 ;R2 ← forward pointer
BEQ 3$ ;If no list, then done
MOV R1,-(SP) ;Save R1
JSR PC,NEWCEL ;R0 ← dummy header NOTE: don't end critical
;section til return from UNLINK
MOV (SP)+,R1 ;Restore R1
MOV R2,CDR(R0) ;Set up dummy header
MOV R0,R3 ;R3 ← backward pointer
1$: CMP CAR(R2),R1 ;Match?
BEQ 4$ ;Yes
MOV R2,R3 ;
2$: MOV CDR(R2),R2 ;Move along
BNE 1$ ;If any more
MOV CDR(R0),R0 ;Go past dummy
3$: MOV (SP)+,R3 ;Restore R3
MOV (SP)+,R2 ;Restore R2
RTS PC ;Return
4$: MOV CDR(R2),CDR(R3) ;Link past the orphan
BR 2$ ;Continue
NEWCEL:
COMMENT ⊗ Returns in R0 a pointer at a cell. Taken from cell space
unless there is none. Uses direct jumps, lets the subsidiary do the
return. ⊗
.IFNZ SMALLB
MOV #CELSPC,R0 ;
JMP GETSBK ;Allocate from small blocks
.IFF
MOV #2,R0 ;Number of words needed
JMP GTFREE ;R0 ← LOC[new block]
.ENDC
; NXTTIM
COMMENT ⊗
JSR PC,NXTTIM
Returns TIME←TIME+1 in R0. If TIME goes negative then set all
positive mark cells to negative, then set time to 1. ⊗
NXTTIM: INC TIME ;TIME←TIME+1
MOV TIME,R0
BGT 4$ ;OK?
MOV GNODES,R0 ;
BEQ 3$ ;DID WE HAVE ANY??
1$: TST INVMRK(R0) ;YES
BLE 2$ ;WAS INVMRK POSITIVE
NEG INVMRK(R0) ;YES, NEGATE IT
2$: MOV NXTGN(R0),R0 ;GO ON TO NEXT
BNE 1$ ;IF ANY
3$: INC R0 ;R0←0+1
MOV R0,TIME ;TIME IS 1 AGAIN
4$: RTS PC
; INVLDT, INVLR0
INVLDT:
COMMENT ⊗ Called only from the outside world. R0 is the node to
invalidate, along with all dependents. We must invalidate dependents
even if the given node is already invalid, unless we have just now
invalidated it, which would imply that we are in a cycle. ⊗
EVWAIT GNEVT ;We change TIME, so must lock this
MOV R0,R1
JSR PC,NXTTIM
MOV R1,R0
JSR PC,INVLR0
EVSIG GNEVT ;End of critical section
RTS PC
INVLR0: CMP INVMRK(R0),TIME ;Are we in a cycle?
BEQ 4$ ;Yes. Return.
1$: MOV TIME,INVMRK(R0) ;No. Invalidate this node.
MOV R2,-(SP) ;Save R2 for recursive call
MOV GNDEPS(R0),R2 ;R2 ← list of dependents
BEQ 3$ ;If any
2$: MOV CAR(R2),R0 ;R0 ← next dependent
JSR PC,INVLR0 ;Go Invalidate it.
MOV CDR(R2),R2 ;Repeat for the rest
BNE 2$ ;If any
3$: MOV (SP)+,R2 ;Restore R2
4$: RTS PC
; CHANGE, CHNGER
COMMENT ⊗ Called by the outside world to put a new value, CHG.VNEW,
in the variable node CHG.ND. Returns with CHG.ND in R0. ⊗
ROUTINE CHANGE,<CHG.ND,CHG.VNEW>
MOV R2,-(SP) ;Save R2
MOV R3,-(SP) ;Save R3
MOV CHG.ND(RF),R1 ;R1 ← the target node.
EVWAIT GNEVT ;Wait until OK to enter critical code.
JSR PC,NXTTIM ;
MOV R1,R0 ;
JSR PC,INVLR0 ;invalidate it for the nonce
MOV CHG.ND(RF),R0 ;R0 ← the target node
MOV GNVAL(R0),R2 ;R2 ← old value
MOV CHG.VNEW(RF),GNVAL(R0) ;stow the new value
MOV VNCHGS(R0),R3 ;R3 ← list of changers
BEQ 2$ ;if any
EVSIG GNEVT ;Leave the overall graph node critical region.
1$: JSR PC,CHNGER ;Call the next change routine
MOV NXTCHG(R3),R3 ;R3 ← next changer
BNE 1$
EVWAIT GNEVT ;Enter critical section again.
2$: MOV CHG.ND(RF),R0 ;R0 ← the target node
CLR INVMRK(R0) ;Revalidate it
INC VALIDNO ;A new validity number
MOV VALIDNO,VALIDF(R0) ;which is put in the validf
EVSIG GNEVT ;Ok for others to enter critical code now.
MOV (SP)+,R3 ;Restore R3
MOV (SP)+,R2 ;Restore R2
RTS PC ;Return
CHNGER:
COMMENT ⊗ Calls the change routine indicated. This is done by
instantiating a new interpreter to do the work. It should terminate
the normal way, with a TERMINATE command. R2 points to the old
value, and CHG.VNEW(RF) points to the new value. R3 points to the
changer cell. These values are put into the new ISB. GNODE
exclusion should be released before the call to CHNGER. Recall that
a changer cell looks like this:
XX NXTCHG ;next changer cell in chain
XX CHGISB ;Points to interpreter status block to resolve addressing
XX CHGIPC ;the interpeter PC where the calculation starts
⊗
MOV R2,-(SP) ;Save R2
MOV R3,-(SP) ;Save R3
MOV R4,-(SP) ;Save R4
;make a new interpreter to do the work
MOV CHGISB(R3),R4 ;R4 ← ISB we have to emulate
MOV CHGIPC(R3),R0 ;R0 ← IPC of new ISB
EVMAK ;Stack a new event for communication with subsidiary
MOV (SP),R1 ;R1 ← copy of that event
JSR PC,SPAWN ;R0 ← Process decriptor
MOV PDBR4(R0),R4;R4 ← ISB of new interpreter
MOV R2,OLDV(R4) ;Stow the "old value" pointer in environment.
MOV CHG.VNEW(RF),NEWV(R4) ;Stow the "new value" pointer.
FORK R0,#INTERP,#2 ;Cause the new process to be started at high prio.
;clean up after the interpreter
EVWAIT ;Wait for the completion event (still on stack)
MOV (SP)+,R4 ;Restore R4
MOV (SP)+,R3 ;Restore R3
MOV (SP)+,R2 ;Restore R2
RTS PC ;Done
; ADDCHG
ROUTINE ADDCHG,<ACH.ND,ACH.CHG>
COMMENT ⊗ ACH.ND is the target graph node, and ACH.CHG is a changer
cell all prepared except for the link to the other changers. It is
necessary to perform this linking. ⊗
MOV R2,-(SP) ;Save R2
MOV ACH.ND(RF),R2 ;R2 ← LOC[target node]
MOV ACH.CHG(RF),R1 ;R1 ← LOC[changer cell]
EVWAIT GNEVT ;Enter critical region for graph nodes
MOV VNCHGS(R2),NXTCHG(R1) ;Link new changer into list
MOV R1,VNCHGS(R2) ;
EVSIG GNEVT ;Leave critical region
MOV (SP)+,R2 ;Restore R2
RTS PC ;Done
; GETVAL, GETVR0
COMMENT ⊗ Called by the outside world. Returns LOC[value(GTV.ND)] in
R0 and the VALIDF in R1, after having scrounged around to get a valid
value, if necessary and possible. ⊗
ROUTINE GETVAL,<GTV.ND>
MOV GTV.ND(RF),R0
JSR PC,GETVR0
RTS PC
GETVR0: TST INVMRK(R0) ;Is the current value good?
BEQ 1$ ;Yes
EVWAIT GNEVT ;No. Enter critical region.
MOV R0,-(SP) ;Save target node
MOV R0,-(SP) ;Stack it too - first arg to EVALND
JSR PC,NXTTIM
MOV R0,-(SP) ;2nd arg - time
MOV RF,-(SP) ;Save RF
MOV SP,RF
JSR PC,EVALND ;CALL EVALND,<GTV.ND,TIME←TIME+1>
MOV (SP)+,RF ;Restore RF
ADD #4,SP ;Pop 2 args
EVSIG GNEVT ;Leave critical region
MOV (SP)+,R0 ;R0 ← target node, now validated
1$: MOV VALIDF(R0),R1 ;Get the validity count
MOV GNVAL(R0),R0 ;R0 ← value cell
RTS PC ;Done
; EVALND, EVLEXP
COMMENT ⊗ EVALND is a recursive procedure, which is given EVL.ND, the
target node to evaluate, and EVL.T, the "time" of evaluation. If
necessary, it calls itself at the same "time" to track down a chain
of related nodes. GNEVT exclusion should be on before this routine
is first called, and will remain on after the return. ⊗
ROUTINE EVALND,<EVL.ND,EVL.T>
MOV EVL.ND(RF),R0 ;R0 ← target graph node
MOV INVMRK(R0),R1 ;Is the node already valid?
BEQ 9$ ;Yes
CMP R1,EVL.T(RF) ;No. Have we already looked at it this "time"?
BEQ 9$ ;Yes
MOV EVL.T(RF),INVMRK(R0) ;No. We have touched our node now
MOV R2,-(SP) ;Save R2
MOV R3,-(SP) ;Save R3
BIT #1,GNMODE(R0) ;A variable or an expression?
BNE 1$ ;Variable
CALL EVLEXP,<R0,EVL.T(RF)> ;Sets GNVAL and INVMRK correctly
BR 8$ ;Done
1$: ;evaluate a variable.
MOV VNCLCS(R0),R2 ;R2 ← list of calculator expressions
BEQ 8$ ;if any
2$: MOV CAR(R2),R1 ;R1 ← first expression
TST INVMRK(R1) ;Is this expression valid?
BNE 3$ ;No
MOV GNVAL(R1),GNVAL(R0) ;Yes. Copy its value pointer
BR 7$ ;Success exit.
3$: MOV CDR(R2),R2 ;R2 ← rest of expression list
BNE 2$ ;Try with next one.
;no currently valid expression. Try to evaluate one.
MOV VNCLCS(R0),R2 ;R2 ← list of calculator expressions
BEQ 8$ ;if any
4$: MOV CAR(R2),R1 ;R1 ← first expression
CALL EVALND,<R1,EVL.T(RF)>
MOV CAR(R2),R1 ;
TST INVMRK(R1) ;Successfully evaluated?
BEQ 5$ ;Yes
MOV CDR(R2),R2 ;Try next one
BNE 4$ ;If any
BR 8$ ;Give up
5$: MOV EVL.ND(RF),R0 ;
MOV GNVAL(R1),GNVAL(R0) ;Transfer the value
BR 7$ ;Success return
COMMENT ⊗ Seems to be a relic here.
;all the needs are met for the expression in CAR(R2)
MOV CAR(R2),R1 ;R1 ← expression node
6$: CALL EVALND,<R1,EVL.T(RF)> ;Evaluate the expression.
MOV EVL.ND(RF),R0 ;R0 ← target node
MOV GNVAL(R1),GNVAL(R0) ;Stow away its new value.
⊗
7$: CLR INVMRK(R0) ;Mark it as valid.
INC VALIDF(R0) ;Increment its validity number
8$: MOV (SP)+,R3 ;Restore R3
MOV (SP)+,R2 ;Restore R2
9$: RTS PC ;Done
COMMENT ⊗ Each expression has a field, ENISB, which points to the
interpreter status block of its definition. This contains enough
information to resolve any variable references in the expression.
Calls the interpreter in a special way (through a pseudo-CALL INTERP) having
first set up a pseudo-ISB in R4. When the interpreter returns, the
desired value should be in R0. Each time called, this routine
constructs a new pseudo-ISB, uses it once, and then releases it.
This is somewhat wasteful, and could be cleaned up. The value found
is put in the expression node, which is marked as valid. It is not
assumed that all the needed nodes have been validated before this
routine is called. ⊗
ROUTINE EVLEXP,<EVE.EXP,EVE.T>
MOV R2,-(SP) ;Save R2
MOV R3,-(SP) ;Save R3
MOV R4,-(SP) ;Save R4
;try to validate the needed list
MOV EVE.EXP(RF),R0 ;R0 ← LOC[ENODE]
MOV EVE.T(RF),INVMRK(R0) ;We are looking now.
MOV ENNEED(R0),R3 ;R3 ← needed list
BEQ 2$ ;if any
1$: CALL EVALND,<CAR(R3),EVE.T(RF)> ;Evaluate this need.
MOV CAR(R3),R0 ;R0 ← variable node of the need
TST INVMRK(R0) ;Is it now valid?
BNE 3$ ;No, so we fail
MOV CDR(R3),R3 ;Yes. R3 ← next needed cell
BNE 1$ ;If any.
;the needed list is ready
2$: MOV #ISBS,R0 ;Get a pseudo-ISB
JSR PC,GTFREE ;R0 ← LOC[new ISB]
MOV R0,R4 ;R4 ← LOC[new ISB]
MOV EVE.EXP(RF),R2 ;
MOV ENISB(R2),R1 ;R1 ← LOC[old ISB]
MOV ENV(R1),ENV(R4) ;Copy environments
MOV LEV(R1),LEV(R4) ;Copy levels
MOV ENIPC(R2),IPC(R4) ;Initialize the IPC
MOV #INSTSZ,R0 ;
JSR PC,GTFREE ;R0 ← LOC[new interpreter stack]
MOV R0,-(SP) ;Save the stack location
ADD #2*INSTSZ,R0 ;
MOV R0,R3 ;R3 ← LOC[verge of new interpreter stack]
JSR PC,NOGC ;Don't garbage collect during this.
MOV RF,-(SP) ;Save RF
MOV SP,RF
JSR PC,INTERP ;Enter the interpreter, R0 ← LOC[new value cell]
MOV EVE.EXP(RF),R2 ;R0 ← LOC[expression node]
CLR INVMRK(R2) ;Now valid
MOV R0,GNVAL(R2) ;Result into the node
MOV R4,R0 ;Release the ISB
JSR PC,RLFREE ;
MOV (SP)+,R0 ;Release the interpreter stack
JSR PC,RLFREE ;
JSR PC,YESGC ;Garbage collect ok now.
3$: MOV (SP)+,R4 ;Restore R4
MOV (SP)+,R3 ;Restore R3
MOV (SP)+,R2 ;Restore R2
RTS PC ;Return
; MAKEXP, ADDCLC, REMCLC, DELEXP
ROUTINE ADDCLC,<ADD.VN,ADD.EN>
COMMENT ⊗ ADD.VN is the variable node, and ADD.EN is an expression
node all prepared except for the link to the variable node. This
linking is performed. ⊗
⊗
MOV R2,-(SP) ;Save R2
MOV R3,-(SP) ;Save R3
MOV ADD.VN(RF),R2 ;R2 ← LOC[variable node]
MOV ADD.EN(RF),R3 ;R3 ← LOC[expression node]
EVWAIT GNEVT ;Enter critical region
;Add the VNODE as a dependent of the ENODE
JSR PC,NEWCEL ;R0 ← LOC[new cell]
MOV GNDEPS(R3),CDR(R0)
MOV R2,CAR(R0) ;
MOV R0,GNDEPS(R3) ;
.IFNZ SMALLB
EVSIG SBEVT ;End of critical section - value stored
.ENDC
;Add the ENODE as an expression of the VNODE
JSR PC,NEWCEL ;R0 ← LOC[new cell]
MOV VNCLCS(R2),CDR(R0)
MOV R3,CAR(R0) ;
MOV R0,VNCLCS(R2) ;
.IFNZ SMALLB
EVSIG SBEVT ;End of critical section - value stored
.ENDC
EVSIG GNEVT ;Leave critical region
MOV (SP)+,R3 ;Restore R3
MOV (SP)+,R2 ;Restore R2
RTS PC ;Done
ROUTINE MAKEXP,<MKE.ISB,MKE.IPC,MKE.NDS>
COMMENT ⊗ Makes a new expression node with ENISB, ENIPC, ENNDS as
specified. Makes it a dependent of all the variables on the needed
list. ⊗
MOV R2,-(SP) ;Save R2
MOV R3,-(SP) ;Save R3
MOV #ENDSIZ,R0 ;
JSR PC,GTFREE ;
MOV R0,R3 ;R3 ← LOC[new expression node]
MOV #2,GNMODE(R3) ;Expression
MOV #-1,INVMRK(R3) ;Invalid
CLR GNVAL(R3) ;No value
CLR GNDEPS(R3) ;No variable dependents
MOV MKE.ISB(RF),ENISB(R3) ;ISB
MOV MKE.IPC(RF),ENIPC(R3) ;IPC
MOV MKE.NDS(RF),R2 ;Need list
EVWAIT GNEVT ;Enter critical region
MOV R2,ENNEED(R3) ;
;this expression is a dependent for each variable on the needed list.
BEQ 2$ ;If any
1$: JSR PC,NEWCEL ;
MOV CAR(R2),R1 ;R1 ← the next needed variable
MOV GNDEPS(R1),CDR(R0) ;
MOV R3,CAR(R0) ;
MOV R0,GNDEPS(R1)
.IFNZ SMALLB
EVSIG SBEVT ;End of critical section - value stored
.ENDC
MOV CDR(R2),R2 ;
BNE 1$ ;Repeat
2$: ;link up with all other graph nodes in the world
MOV GNODES,R1 ;
BEQ 3$ ;If any
MOV R1,NXTGN(R3) ;
MOV R3,PRVGN(R1) ;
3$: MOV R3,GNODES ;
MOV R3,R0 ;R0 ← LOC[new expression node]
EVSIG GNEVT ;Leave critical region
MOV (SP)+,R3 ;Restore R3
MOV (SP)+,R2 ;Restore R2
RTS PC ;Done
ROUTINE REMCLC,<RMC.VN,RMC.EN>
COMMENT ⊗ Unlinks the given expression from the given variable. ⊗
MOV R2,-(SP) ;Save R2
MOV R3,-(SP) ;Save R3
MOV RMC.EN(RF),R2 ;R2 ← ENODE
MOV RMC.VN(RF),R3 ;R3 ← VNODE
CALL GETVAL,<R3> ;Make sure he has a last chance to get value.
EVSIG GNEVT ;Enter critical region
;remove the VNODE as a dependent of the ENODE
MOV GNDEPS(R2),R0 ;
MOV R3,R1 ;
JSR PC,UNLINK ;
MOV R0,GNDEPS(R2) ;
.IFNZ SMALLB
EVSIG SBEVT ;End of critical section - value stored
.ENDC
;remove the ENODE as a calculator of the VNODE
MOV VNCLCS(R3),R0 ;
MOV R2,R1 ;
JSR PC,UNLINK ;
MOV R0,VNCLCS(R3) ;
.IFNZ SMALLB
EVSIG SBEVT ;End of critical section - value stored
.ENDC
EVSIG GNEVT ;Leave critical region
MOV (SP)+,R3 ;Restore R3
MOV (SP)+,R2 ;Restore R2
RTS PC ;Done
ROUTINE DELEXP,<DLE.EN>
COMMENT ⊗ Must remove this expression from all variable nodes which
are dependent on it, having tried to validate them. Then unlink the
expression node and reclaim it. modified 10/76 by arg ⊗
MOV R2,-(SP) ;Save R2
MOV R3,-(SP) ;Save R3
MOV DLE.EN(RF),R2 ;R2 ← LOC[victim expression node]
EVWAIT GNEVT ;Enter critical region
MOV GNDEPS(R2),R3 ;R3 ← list of dependents
BEQ 2$ ;If any
JSR PC,NXTTIM ;
MOV R0,-(SP) ;New time for the evaluations to follow
1$: MOV CAR(R3),R0 ;
MOV (SP),R1 ;Time
CALL EVALND,<R0,R1> ;Try to validate him
MOV VNCLCS(R0),R0 ;R0 ← his list of calculators
MOV R2,R1 ;us
JSR PC,UNLINK ;Remove us from that list
MOV CAR(R3),R1 ;him
MOV R0,VNCLCS(R1) ;Put back his calculator list, minus us.
.IFNZ SMALLB
EVSIG SBEVT ;End of critical section - value stored
.ENDC
MOV CDR(R3),R3 ;Next calculator
BNE 1$ ;If any
TST (SP)+ ;Clear the time from the stack
;Remove the expression from the dependent list's of all the variables
;on the expressions needed list
2$: MOV ENNEED(R2),R3 ;Get needed list
BEQ 4$ ;If any
3$: MOV CAR(R3),R0 ;R0 ← variable from needed list
MOV GNDEPS(R0),R0 ;R0 ← his list of dependents
MOV R2,R1 ;us
JSR PC,UNLINK ;Remove us from his list
MOV CAR(R3),R1 ;him again
MOV R0,GNDEPS(R1) ;Put back his dependent list minus us
.IFNZ SMALLB
EVSIG SBEVT ;End of critical section - value stored
.ENDC
MOV CDR(R3),R3 ;Next from needed list
BNE 3$ ;Til done
;unlink this expression node
4$: MOV NXTGN(R2),R1 ;R1 ← forward link
MOV PRVGN(R2),R0 ;R0 ← backward link
MOV R0,PRVGN(R1) ;
MOV R1,NXTGN(R0) ;
MOV R2,R0
JSR PC,RLFREE ;Release the space
EVSIG GNEVT ;Leave critical region.
MOV (SP)+,R3 ;Restore R3
MOV (SP)+,R2 ;Restore R2
RTS PC ;Done
; MAKEVN, DELVN
MAKEVN:
COMMENT ⊗ Creates a variable node, with no frills (no calculators,
changers, loksh, boydem, tsibele, ...) except that if R0 is
non-zero, that is assumed to be the value cell pointer. The node
will be marked as invalid unless there was some value given. The
space is taken from large block storage. The new variable node is
returned in R0. ⊗
MOV R0,-(SP) ;Save R0
MOV #VNDSIZ,R0
JSR PC,GTFREE ;R0 ← LOC[new graph node]
CLR INVMRK(R0) ;Validate the node
MOV #1,GNMODE(R0) ;Variable, not expression
MOV (SP)+,GNVAL(R0) ;Stuff away the value cell pointer.
BNE 1$ ;Was there one?
MOV #-1,INVMRK(R0) ;No. Invalidate this node.
1$: CLR GNDEPS(R0) ;Zero other fields
CLR VNCLCS(R0)
CLR VNCHGS(R0)
CLR NXTGN(R0)
CLR PRVGN(R0)
CLR VALIDF(R0)
EVWAIT GNEVT ;Critical section here
MOV GNODES,R1 ;Link up to other nodes in the world.
BEQ 2$ ;If any
MOV R1,NXTGN(R0)
MOV R0,PRVGN(R1)
2$: MOV R0,GNODES
EVSIG GNEVT ;End of critical section
RTS PC
DELVN:
COMMENT ⊗ R0 is the location of the variable node. All dependent
expressions are first validated if possible, then those are deleted.
(Not any more. arg 10/76)
The value cell and all cell lists (like GNDEPS, VNCLCS) are reclaimed
by relying on the garbage colector. Thus graph nodes may share value
cells. The changer list is explicitly released, so changer lists may
not be shared. Then the node itself is unlinked from the chain and
returned to free storage. ⊗
MOV R2,-(SP) ;Save R2
MOV R3,-(SP) ;Save R3
MOV R0,R2 ;R2 ← variable node to delete
;Try to validate the dependents
MOV GNDEPS(R2),R3 ;R3 ← List of dependent expressions
BEQ 2$ ;if any
1$: CALL DELEXP,<CAR(R3)> ;Delete expression.
MOV CDR(R3),R3 ;R3 ← next dependent
BNE 1$ ;if any
;Tell each calculator expression that we are no longer dependent
2$: EVWAIT GNEVT ;Enter critical region
MOV VNCLCS(R2),R3 ;R3 ← List of calculator expressions
BEQ 5$ ;If any
3$: MOV CAR(R3),R0 ;
MOV GNDEPS(R0),R0 ;R0 ← that expression's dependent list
MOV R2,R1 ;R1 ← us
JSR PC,UNLINK ;Remove us from his dependent list
MOV CAR(R3),R1 ;R1 ← him
MOV R0,GNDEPS(R1) ;Replace his new dependent list
.IFNZ SMALLB
EVSIG SBEVT ;End of critical section - value stored
.ENDC
BNE 4$
CALL DELEXP,<R1> ;Delete expression if no one else dependent on him
4$: MOV CDR(R3),R3 ;Do the same for the other calculator expressions
BNE 3$ ;If any
;Reclaim the changer cells
5$: MOV VNCHGS(R2),R3 ;R3 ← First changer cell
6$:: MOV R3,R0 ;R0 ← current changer cell
BEQ 7$ ;If any
MOV NXTCHG(R3),R3 ;R3 ← next changer cell
JSR PC,RLFREE ;Release current one
BR 6$ ;Do the others
;Unlink this graph node
7$: MOV NXTGN(R2),R1 ;R1 ← forward link
MOV PRVGN(R2),R0 ;R0 ← backward link
BEQ 8$ ;if any
MOV R1,NXTGN(R0) ;
BR 9$ ;
8$: MOV R1,GNODES ;if no backward link, then the header.
9$: TST R1 ;Is there a forward link?
BEQ 10$ ;No
MOV R0,PRVGN(R1) ;Yes. set up next guy's backpointer
10$: EVSIG GNEVT ;Leave critical region.
MOV R2,R0 ;R0 ← target graph node hulk
JSR PC,RLFREE ;Release it.
MOV (SP)+,R3 ;Restore R3
MOV (SP)+,R2 ;Restore R2
RTS PC ;Done
; MGNDS marking method for gnodes
MGNDS: ;Marking method for GNODES
MOV R2,-(SP) ;Save R2
EVWAIT GNEVT ;Enter critical region
MOV GNODES,R2 ;R2 ← LOC[first graph node]
BEQ 4$ ;If none, then done
1$: TST INVMRK(R2) ;See if value is valid
BEQ 5$
CLR GNVAL(R2) ; & if so don't mark it
BR 6$
5$: MOV GNVAL(R2),R0 ;Mark the value cell
JSR PC,MARKQ ;
MOV R0,GNVAL(R2) ;Put it back (compacting may move it)
6$: MOV GNDEPS(R2),R0 ;Mark the cells used in the dependent list
JSR PC,MCELL ;
MOV R0,GNDEPS(R2) ;Put it back
BIT #1,GNMODE(R2) ;What kind of graph node is it?
BEQ 2$
MOV VNCLCS(R2),R0 ;A variable. Mark cells in CLC list
JSR PC,MCELL ;
MOV R0,VNCLCS(R2) ;Put it back
BR 3$
2$: MOV ENNEED(R2),R0 ;An expression. Mark cells in ENNEED list
JSR PC,MCELL ;
MOV R0,ENNEED(R2) ;Put it back
3$: MOV NXTGN(R2),R2 ;R2 ← LOC[next graph node]
BNE 1$ ;Repeat as necessary
4$: MOV (SP)+,R2 ;Restore R2
EVSIG GNEVT ;Leave critical region
RTS PC ;Return
; Known Bugs
COMMENT ⊗ It is possible that while a graph node is changed, a
changer is invoked. During its execution, some other process
modifies the change list for that node. When the changer is done, it
may get lost in the changer cell list. Graph node exclusion must be
turned off during execution of a changer, so that it can change other
cells. Special changer exclusion causes deadlock in the case that
one changer triggers another.
Certain variables, like YELLOW and BLUE, are not being initialized
to anything.
⊗